凸轮轮廓线推导

题目

某直动尖顶推杆盘型凸轮机构,已知:

    基圆半径:   $r_0 =50mm$
    偏心距:    $e= 15mm$
    推程运动角: $\delta_0 =150^\circ$
    远休止角:   $\delta_1 =30^ \circ$
    回程运动角: $\delta_2 =90 ^\circ$
    近休止角:   $\delta_3 = 90 ^\circ$

推程阶段运动规律为等加速等减速。回程阶段为简谐运动,凸轮转向为顺时针,偏置方式为正偏置。
用解析法设置此凸轮机构,推导凸轮轮廓线数学方程,并绘制运动线图和凸轮轮廓图。

建立数学模型

运动规律

等加速等减速运动过程


  待求量       推程         回程    
加速阶段 $0\le\delta\le \frac{\delta_0}{2}$ $0\le\delta\le \frac{\delta_0’}{2}$
$s=$ $2h\frac{\delta^2}{\delta_0^2}$ $h-2h\frac{\delta^2}{\delta_0’^2}$
$v=$ $4h\omega\frac{\delta}{\delta_0^2}$ $-4h\omega\frac{\delta}{\delta_0’^2}$
$\alpha=$ $4h\frac{\omega^2}{\delta_0^2}$ $-4h\frac{\omega^2}{\delta_0’^2}$
减速阶段 $\frac{\delta_0}{2}\le\delta\le\delta_0$ $\frac{\delta_0’}{2}\le\delta\le\delta’_0$
$s=$ $h-2h\frac{(\delta_0-\delta)^2}{\delta_0’^2}$ $2h\frac{(\delta_0’-\delta)^2}{\delta_0^2}$
$v=$ $4h\omega\frac{(\delta_0-\delta)}{\delta_0^2}$ $-4h\omega\frac{(\delta_0’-\delta)}{\delta_0’^2}$
$\alpha=$ $-4h\frac{\omega^2}{\delta_0’^2}$ $4h\frac{\omega^2}{\delta_0^2}$



简谐运动(余弦加速度)


  待求量       推程         回程    
简谐运动 $0\le\delta\le \frac{\delta_0}{2}$ $0\le\delta\le \frac{\delta_0’}{2}$
$s=$ $\frac{h}{2}[1-cos(\frac{\pi\delta}{\delta_0})]$ $\frac{h}{2}[1+cos(\frac{\pi\delta}{\delta_0})]$
$v=$ $\frac{\pi h\omega }{2\delta_0}sin(\frac{\pi \delta }{\delta_0})$ $-\frac{\pi h\omega }{2\delta_0’}sin(\frac{\pi \delta }{\delta_0’})$
$\alpha=$ $\frac{\pi^2 h\omega^2 }{2\delta_0^2}sin(\frac{\pi \delta }{\delta_0})$ $-\frac{\pi^2 h\omega^2 }{2\delta_0’^2}sin(\frac{\pi \delta }{\delta_0’})$
摆线运动 $0\le\delta\le \frac{\delta_0}{2}$ $0\le\delta\le \frac{\delta_0’}{2}$
$s=$ $h[\frac{\delta}{\delta_0}-\frac{1}{2\pi}sin(\frac{2\pi \delta}{\delta_0})]$ $h-h[\frac{\delta}{\delta_0’}-\frac{1}{2\pi}sin(\frac{2\pi \delta}{\delta_0’})]$
$v=$ $\frac{h\omega}{\delta_0}[1-cos(\frac{2\pi \delta}{\delta_0})]$ $-\frac{h\omega}{\delta_0’}[1-cos(\frac{2\pi \delta}{\delta_0’})]$
$\alpha=$ $\frac{2 \pi h \omega }{\delta_0^2}sin(\frac{2 \pi \delta}{\delta})$ $-\frac{2 \pi h \omega }{\delta_0^2}sin(\frac{2 \pi \delta}{\delta})$



  由以上知识可知,其运动过程如下所示:

$s=\begin{cases} s1_1=2h\frac{\delta^2}{\delta_0^2} & \delta\in(0,75^\circ) \\s1_2 = h-2h\frac{(\delta_0-\delta)^2}{\delta_0'^2} & \delta \in(75^\circ,150^\circ) \\ s2=0 & \delta \in (150^\circ,180^\circ) \\s3= \frac{h}{2}[1+cos(\frac{\pi\delta}{\delta_0})] & \delta\in(180^\circ,270^\circ) \\s4=0 & \delta \in(270^\circ,360^\circ) \end{cases}$

$v=\begin{cases} v1_1 = 4h\omega\frac{\delta}{\delta_0^2}& \delta\in(0,75^\circ) \\v1_2 = 4h\omega\frac{(\delta_0-\delta)}{\delta_0^2} & \delta \in(75^\circ,150^\circ)\\ v2 = 0 & \delta \in (150^\circ,180^\circ) \\v3=-\frac{\pi h\omega }{2\delta_0'}sin(\frac{\pi \delta }{\delta_0'}) & \delta\in(180^\circ,270^\circ) \\v4= 0 & \delta \in(270^\circ,360^\circ) \end{cases}$

$\alpha=\begin{cases} a1_1 = 4h\frac{\omega^2}{\delta_0'^2}& \delta\in(0,75^\circ) \\a1_2 = -4h\frac{\omega^2} {\delta_0'^2} & \delta \in(75^\circ,150^\circ)\\ a2 = 0 & \delta \in (150^\circ,180^\circ) \\a3= -\frac{\pi^2 h\omega^2 }{2\delta_0'^2}sin(\frac{\pi \delta }{\delta_0'})& \delta\in(180^\circ,270^\circ) \\ a4= 0 & \delta \in(270^\circ,360^\circ) \end{cases}$

3-1
3-2
3-3

  再得偏置直动尖顶推杆盘型凸轮机构理论轮廓线:


$\begin{cases} x=(s_0+s)\sin\delta + e\cos\delta \\y=(s_0+s)\cos\delta - e\sin\delta\end{cases}$

  其中$s_0=\sqrt{r_0^2-e^2}$

  采用解析法,得到如下图所示盘型凸轮机构轮廓图:

3-4

部分程序示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
clear
clc

%导入信息
r0=50; %基圆半径
e=15; %偏心距
delta_0=150;
delta_1=30;
delta_2=90;
delta_3=90;
h=25;

%计算
delta=[0:1:360];
s0=sqrt(r0^2-e^2);


%各个推程位移、速读、加速度计算
s11=2*h.*((delta.^2)/(delta_0^2));
s12=h-2*h.*((delta_0-delta).^2/(delta_0^2));
v1_1=4*h.*(delta/delta_0^2).*(delta>=0 & delta<=75);
v1_2=4*h.*((delta_0-delta)/delta_0^2).*(delta>75 & delta<=150);
a11=(4*h)/delta_0^2;
a12=-(4*h)/delta_0^2;

s2=h.*(delta>150 & delta<180);
v2=0.*(delta>=150 & delta<180);
a2=0;

s3=0.5*h.*(1+cos((delta./delta_2)*pi));
v3=-(pi*h.*sin((delta./delta_2)*pi))/(2*delta_2).*(delta>=180 & delta<=270);
a3=-(pi^2*h.*cos((delta./delta_2)*pi))/(2*delta_2^2);

s4=0.5*h*(1+cos((270/270)*pi)).*(delta>270 & delta<=360);
v4=0.*(delta>270 & delta<=360);
a4=0;


s=s11.*(delta>=0 & delta<=75)+s12.*(delta>75 & delta<=150)+s2+s3.*(delta>=180 & delta<=270)+s4;
v=v1_1+v1_2+v2+v3+v4;
a=a11.*(delta>=0 & delta<=75)+a12.*(delta>75& delta<=150)+a2.*(delta>150 & delta<180)+a3.*(delta>=180 & delta<=270)+a4.*(delta>270 & delta<=360);


%计算出推杆位置坐标
x=(s0+s).*sin(delta)+e.*cos(delta);
y=(s0+s).*cos(delta)-e.*sin(delta);
rho=sqrt(x.^2+y.^2);
r=50;